一致性哈希

luoyjx · 2015-09-16 22:57 · 877次阅读

一致性哈希算法在1997年由麻省理工学院提出,设计目标是为了解决因特网中的热点(Hot spot)问题,初衷和CARP十分类似。一致性哈希修正了CARP使用的简单哈希算法带来的问题,使得DHT可以在P2P环境中真正得到应用。

一致性哈希提出了在动态变化的Cache环境中,哈希算法应该满足的4个适应条件:

  • 均衡性(Balance)
  • 单调性(Monotonicity)
  • 分散性(Spread)
  • 负载(Load)

均衡性(Balance)

平衡性是指哈希的结果能够尽可能分布到所有的缓冲中去,这样可以使得所有的缓冲空间都得到利用。很多哈希算法都能够满足这一条件。

单调性(Monotonicity)

单调性是指如果已经有一些内容通过哈希分派到了相应的缓冲中,又有新的缓冲区加入到系统中,那么哈希的结果应能够保证原有已分配的内容可以被映射到新的缓冲区中去,而不会被映射到旧的缓冲集合中的其他缓冲区。(这段翻译信息有负面价值的,当缓冲区大小变化时一致性哈希(Consistent hashing)尽量保护已分配的内容不会被重新映射到新缓冲区。) 简单的哈希算法往往不能满足单调性的要求,如最简单的线性哈希: x → ax + b mod § 在上式中,P表示全部缓冲的大小。不难看出,当缓冲大小发生变化时(从P1到P2),原来所有的哈希结果均会发生变化,从而不满足单调性的要求。 哈希结果的变化意味着当缓冲空间发生变化时,所有的映射关系需要在系统内全部更新。而在P2P系统内,缓冲的变化等价于Peer加入或退出系统,这一情况在P2P系统中会频繁发生,因此会带来极大计算和传输负荷。单调性就是要求哈希算法能够应对这种情况。

分散性(Spread)

在分布式环境中,终端有可能看不到所有的缓冲,而是只能看到其中的一部分。当终端希望通过哈希过程将内容映射到缓冲上时,由于不同终端所见的缓冲范围有可能不同,从而导致哈希的结果不一致,最终的结果是相同的内容被不同的终端映射到不同的缓冲区中。这种情况显然是应该避免的,因为它导致相同内容被存储到不同缓冲中去,降低了系统存储的效率。分散性的定义就是上述情况发生的严重程度。好的哈希算法应能够尽量避免不一致的情况发生,也就是尽量降低分散性。

负载(Load)

负载问题实际上是从另一个角度看待分散性问题。既然不同的终端可能将相同的内容映射到不同的缓冲区中,那么对于一个特定的缓冲区而言,也可能被不同的用户映射为不同的内容。与分散性一样,这种情况也是应当避免的,因此好的哈希算法应能够尽量降低缓冲的负荷。 从表面上看,一致性哈希针对的是分布式缓冲的问题,但是如果将缓冲看作P2P系统中的Peer,将映射的内容看作各种共享的资源(数据,文件,媒体流等),就会发现两者实际上是在描述同一问题。

node.js 实现

https://www.npmjs.com/package/consistent-hashing https://github.com/dakatsuka/node-consistent-hashing

收藏

暂无评论

登录后可以进行评论。没有账号?马上注册